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* Calorimeter motivation
from u>ey experiment requirements
* The MEG liquid xenon calorimeter
* MEG calorimeter performance
* Improvements being considered



Signal and Background Signatures
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Previous Experience and MEG Goal

ePhoton energy:

e Calorimetric (Crystal Box, MEG)
e Limited by resolution of calorimeter
e Large solid angle
e Possibly poor y direction measurement
e Pair produce, measure e*e (MEGA)
e Low acceptance due to thin convertor
to reduce energy loss — high rates
e \Very good energy resolution possible
e Positron energy:
e Calorimetric (Crystal Box)
e Large solid angle, poor resolution
e Magnetic spectrometer (MEGA
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Exp./Lab  Year Orms Resolutions Stop rate Duty cycle BR
% )
E,[%  E([%] Atgps] Ao[mradq] M4 el (90% CL)
SIN (PSI) 1977 3.7 4.0 590 - 0.5 100 3.6 x10°
TRIUMF 1977 4.3 3.7 2900 - 0.2 100 1x10°
LANL 1979 3.7 3.4 810 16 0.24 6.4 1.7 x 1010
Crystal Box 1986 3.4 3.4 550 37 0.4 (6.9) 49x 10"
MEGA 1999 0.51 1.9 610 7 250 (6.7) 1.2x 10"
MEG prop. 2010 0.38 1-2% 64 8 30 100 1x10"3
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Liguid Xenon Calorimeter

Liquid Xenon
Scintillation Detector

Stopping Target “"-., :

3 \ Timing Counter

Muon Beam

[ : :ﬁFE:' : |

Drift Chamber

Relatively high light yield, uniform response
No self-absorption of scintillation light:
attenuation only from impurities

~1000 | liquid xenon (largest LXe volume)
~860 mesh phototubes on surface, in LXe
Thin window to reduce photon conversions

Goal is to measure photon properties:
— Position:  Ogpys =5 mMm

— Time: Ogrvs = 60 ps

— Energy:  Ogys = 900 keV at 52 MeV

Density

Boiling and melting points

Energy per scintillation photon
Radiation length

Decay time

Scintillation light wave length
Scintillation light absorption length
Attenuation length (Rayleigh scattering)

Refractive index
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2.95 g/cm3
165 K, 161 K
24 eV

2.77 cm
4.2,22,45ns
175 nm

> 100 cm

30 cm

1.74
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Calorimeter Reconstruction Algorithms

* Energy
— based on properties of the calorimeter
* Light production is uniformly proportional to energy deposition
Light attenuation length is very long (>2 m)
Scattering length is relatively short (< 50 cm)
Photocathode coverage is relatively uniform
Phototube quantum efficiency and gain can be well measured and equalized
— First estimator of energy is sum of signals in phototubes (corrected for gain and quantum
efficiency), corrected by local photocathode fractional coverage
— Additional energy correction factors determined as a function of 3D position using
extensive data with photons from m° decay
e Corrections vs. conversion point due to large variations of photocathode coverage with position
when conversion is near the front face
* Corrections vs. transverse coordinate due to geometrical effects (shallow angle of incidence on
phototube face ...)
* Time
— Fit that is basically a weighted average of times in phototubes, corrected
for propagation time from shower position to phototube — primarily from front face
— Time at the vertex corrected for 53 MeV photon propagation time to first conversion
point and for optical photon propagation to phototube —5 mm error in depth of
conversion is about 50 ps error in flight time

* Position
— Fit to pattern of signal amplitudes in phototubes, primarily on front face



Advantages and Disadvantages of Liguid Xenon Calorimeter

* Advantages

— Uniform ratio of light produced to energy deposited — fluctuations in fraction of ionization
vs. light contributes to resolution at low energy if both are not measured

— No dead material in active volume

— High light yield — typically ~200k photo-electrons for 53 MeV photon

—Signal is fast — decay time ~50 ns

— Very long absorption length limited by impurities

— Can fit for vertex position in all dimensions — important in determining photon time at
vertex

e Disadvantages

— Lack of optical separation means pileup is not easily isolated and affects signals far away

— Relatively short scattering length means light paths can be complicated, with reflections
important to observed light distribution

— Need for cryostat reduces acceptance due to photon conversions in the cryostat wall

— Granularity of photocathode coverage on the walls complicates position and energy
reconstruction for showers near the wall

— Calibrating each photo-detector for quantum efficiency times gain is arguably more difficult
than it is for isolated detector elements



Calibration and Resolution Measurement Schemes

* Energy
— Primary energy scale calibration and resolution from pion charge exchange:
7 capture on protons at rest, producing a it® with low, fixed momentum
— Monitoring with photons of fixed energy from nuclear reactions
— Phototube quantum efficiency from alpha sources in calorimeter
— Phototube gain from LEDs
* Time
— Alignment from pion charge exchange data with a reference scintillator
— Resolution from same data, de-convolving reference scintillator resolution
and finite target size effects
* Position
— Alignment by survey and by imaging small collimators placed in front of the
calorimeter at known positions
— Resolution by fit to shape of edges of collimator, referenced to Monte Carlo



Ey Calibration

* Negative pions stopped in liquid hydrogen target
Tagging the other photon at 180° provides
monochromatic photons in calorimeter

Data are used to set absolute energy scale vs.
position in calorimeter (in 3D)

Resolution also measured vs. position in 3D
Dalitz decays were used to study positron-
photon synchronization and time resolution:
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Photon Energy Resolution from Charge Exchange

o, resolution function transverse position in calorimeter
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L Xe Calibration Monitoring using Photons from Nuclear Interactions

e Cockcroft Walton proton accelerator

— 300-1000 keV, high flux

— Beam line that allows remote insertion of thin foil target
in vacuum to center of apparatus

— Produce photons by nuclear reactions on thin target

— Calibration run typically 3 times per week
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Position and Time Resolution

1600 ﬁ“h* o) ] ata -+ Image slots in lead collimator in front of calorimeter, using
1400 I I f‘f‘v"h : charge exchange data, to align calorimeter
:zzz Cov i [Vt v 1 ¢ Same data used to infer resolution: in transverse directions
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* De-convolve resolution of reference counter (93 ps) and finite
target size (58) gives full calorimeter resolution of 78 ps
* Intrinsic resolution ~45 ps (excluding conversion point

= contribution) determined by comparing times from two

subsets of tubes
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Stability of Ey Scale

e Stability monitored by variety of measurements
— Primarily from the photons from nuclear reactions
— Checks against endpoint of the radiative decay spectrum
— Checks against cosmic ray spectrum
—Slow gain shift in photo-tubes calibrated out

* Long-term stability good to 0.3% RMS
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Pileup Removal

* Events with clear pileup signal are identified and handled in a variety of ways

— Events that have spatially separated showers corrected by removing secondary peak and
replacing tube energies with templates based on light in unaffected regions

— Events that have clear evidence of showers overlapping in time are fit to superposition of
pulses of known shape.

— Events that have evidence of pileup, but
without clear separation in time or space
are eliminated
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Current MEG Results from Data Through 2010

Order data by likelihood ratio, contours at 1, 1.64, 20
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Current MEG Result
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Potential Upgrades to Calorimeter

 Limitations to performance

— Resolution for early conversions worse due mostly to granularity of photo-cathode coverage

— Resolution near edges worse due to less than optimal pointing geometry of phototubes

— Stochastic variation of resolution and absolute calibration with 3D position in calorimeter
that is not completely understood. Likely due at least in part to quantum efficiency and gain
calibration errors.

— Effects of scattering, particularly with reflections off walls, complicates energy
determination and likely contributes to resolution

* Upgrades being considered

—Replace the phototubes on front face with MPPCs (SIPMs)
* Reduce the granularity of the photo-cathode coverage
* Possibly increase the photo-cathode coverage
* Less dead space and material at the front face — increased efficiency
—Use non-reflective coating on the interior face of the cryostat to reduce reflections
* Plenty of photo-electrons, so decrease in total light yield is not a problem
* Will likely improve all of energy, timing, position resolution
—Modify phototube orientation on side walls to be in a single plane
* Reduces shadowing
—Increase active size in the Z direction
* Improves light collection and resolution




MPPCs for Front Face
* Use large area MPPCs 12x12 mm?

» A few potential suppliers ¥

* Mount them on ceramic base + I
printed circuit board 1] LLLLLE

* Up to 3500 devices — T

* Many things need to be studied Mo Nowme 12 SEEENENNNN

.. . . . . . EENREERA AN
— Intrinsic non-linearity with large dynamic range — correctible MMOnBOEEDE
— Absorption of vuv photons in protective layer — remove it
— Reflection from silicon surface — anti-reflective coating

— Cross-talk between pixels — cut channels

— After-pulsing, worse at low temperature

— Potential for increased noise summing many signals
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Comparison of Position Resolution
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Position Resolution Improvement vs. Depth
U resolution ' !
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Effect of MPPCs on Energy Resolution

Results from Monte Carlo that includes shower fluctuations and light propagation but
not all contributions to energy resolution

Depth <2cm Depth > 2cm
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Reduce Reflectivity of Cryostat Walls

* Gold has lower reflectivity at 180 nm
ALUMINUM GOLD /
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* Anti-reflective coatings from industry
MARTIN MARIETTA ASTRONAUTICS GROUP (“Martin Black”) ALUMINUM TREATMENT

AND GOLD DEPOSITO ON PEEK SURFACES

Martin Black. Martin Black is an anodized aluminum surface that is made microrough
by a special anodization process developed by Martin Marietta Astronautics Group,
Denver (Wade et al., 1978, Shepard, 1992). It is made black from the inclusion of an
aniline dye which is sealed into the surface. It was developed for the Skylab program and
has been used on a wide variety of space instruments operating from the vacuum
ultraviolet to the far-infrared. The surface is rough, and scattering at several fundamentally

different scale lengths occurs.
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Modify Phototube Orientation, Increase Lateral Size

Motivated hv nnnr licht rallaction efficiency on side faces

B
W < 2cm w >=2cm
) Ouwp FWHM Oup FWHM
B 0.9% 3.3% 0.7% 2.3%
5 C 0.8% 3.4% 0.5% |.4%
D 0.8% 3.2% 0.5% |.4%
E

E 0.6% 3.0% 0.5% 1.3%
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Summary

* MEG is background limited above 1012 branching fraction largely due
to resolutions worse than proposal values

* Nonetheless, should reach a 90% CL sensitivity below 1012 with data to
be collected through ~1 year from now

* We are considering upgrades that could improve resolutions (and
hence background rejection) and that could be implemented within ~2

years and yield significantly improved sensitivity within 5 years
—Upgraded liquid xenon calorimeter — discussed here

—New drift chamber —improved energy, angle measurements

—New timing counters — improved intrinsic resolution, better match to drift chamber

—Possible active target — improved angle determination
—Muon stop rate increase by up to a factor of 3

* We plan to submit a proposal for the upgrades by the end of the year



